a.

Sixth Semester B.E. Degree Examination, June/July 2013 **Digital Communication**

Time: 3 hrs. Max. Marks: 100

> Note: 1. Answer FIVE full questions, selecting atleast TWO questions from each part. 2. Missing data, if any, may be suitable assumed.

PART - A

- 1 With a neat block diagram, explain the various elements of a digital communication system. a. (07 Marks)
 - Prove that the mean square error of reconstructed message process is zero for wide sense stationary message process whose power spectral density is strictly bandlimited. (08 Marks)
 - The signals $g_1(t) = 10 \cos 100 \pi t$ and $g_2(t) = 10 \cos 50 \pi t$ are both sampled with $f_s = 75 \text{ hz}$. Show that the two sequences so obtained are identical. (05 Marks)
- 2 Six independent message sources of band widths w w, 2w, 2w, 3w and 3w are to be transmitted on a time division multiplexing basis using common channel. Set up a scheme for accomplishing this with each message being sampled at its Nyquist rate. Determine the minimum transmission bandwidth of the channel.
 - b. Derive on expression for the probability of error to estimate the performance of PCM system transmitted along the channel associated with AWGN. (08 Marks)
 - c. Explain the need for non-uniform quantization also explain μ law and A law compounding. (07 Marks)
- Explain the working of DPCM transmitter and receiver. 3 (08 Marks)
 - For the given binary sequence 111000110101, draw the digital format waveforms b. corresponding to,
 - i) Polar Manchester coding ii) Bipolar NRZ iii) 8 - ary signalling iv) Polar RZ. (05 Marks)
 - For the sinusoidal modulating signal $x(t) = A_0 \cos(2 \pi f_0 t)$, show that the output signal to quantizing noise ratio in a delta modulated system under the assumption of no slope overload is given by,

$$[SNR]_0 = \frac{3f_s^3}{8\pi^2 f_0^2 f_m}$$

where, f_s = sampling frequency; f_m = cutoff frequency of LPF in receiver. (07 Marks)

- What is correlative coding? Explain duobinary coding with and without precoding.
- (08 Marks) Derive the Nyquist criterion for distortionless baseband binary transmission and mention its b. practical limitation and solution for it. (07 Marks)
 - Write a note on adaptive equalization for data transmission. (05 Marks)

PART - B

5 Driver an expression for probability of error in binary ASK generation and coherent detection. (08 Marks)

- b. A binary sequence 101101 is transmitted over a communication channel using DPSK transmitter shown in Fig. Q5(b)(i) the channel introduces a phase reversal of 180°
 - i) Sketch the transmitted DPSK waveform assuming an initial bit of 1. What is the effect of changing initial bit to 0?
 - ii) Assuming the cannel is noise free, show that the DPSK detector in receiver shown in Fig. 5(b)(ii) produces the original binary sequence, despite the 180° phase reversal in the channel. Take DPSK waveform with $d_{k-1} = 1$. (08 Marks)

- c. With the help of sketches, explain generation and detection of binary FSK signals. (04 Marks)
- a. Two signals S₁(t) and S₂(t) are given in Fig. 6(a). The interval is 0 ≤ t ≤ T secs. Using Gram

 Schmidt procedure, express these functions in terms of orthogonal basis functions. Also sketch φ₁(t) and φ₂(t).
 (06 Marks)

b. Explain important properties of matched filter.

(08 Marks)

c. 3 signals $S_1(t)$, $s_2(t)$ and $S_3(t)$ are to be transmitted over AWGN channel with noise power spectral density $\frac{No}{2}$. The signals are,

$$S_{\mathbf{I}}(t) = \begin{cases} 1, & 0 \le t \le T \\ 0, & \text{otherwise} \end{cases}$$

$$S_{2}(t) = \begin{cases} 1, & 0 \le t \le T/2 \\ 0, & \text{otherwise} \end{cases}$$

$$S_{1}(t) = \begin{cases} 1, & 0 \le t \le T/2 \\ 0, & \text{otherwise} \end{cases}$$

- i) Determine the dimensionality of signal space
- ii) Determine appropriate basis functions for the signal space
- iii) Draw the constellation diagram and sketch optimum decision regions Z_1 , Z_2 , Z_3 . (06 Marks)
- 7 a. Explain the properties of maximum length sequences.

(05 Marks)

- b. With the help of a block diagram, explain direct sequence spread spectrum system with binary PSK.

 (08 Marks)
- c. With the help of a block diagram, explain the working of a frequency hopped transmitter and receiver. (07 Marks)
- 8 Write short notes on: a. Flat top sampling
- b. Speech coding at low bit rates
- c. Digital modulation formats
- d. Eye pattern. (20 Marks)